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ABSTRACT

Spacecraft polymeric materials as well as polymer-matrix carbon-fiber composites can be

significantly eroded as a result of exposure to atomic oxygen in low Earth orbit (LEO). Several

new materials now exist, as well as modifications to conventionally used materials, that provide

much more resistance to atomic oxygen attack than conventional hydrocarbon polymers.

Protective coatings have also been developed which are resistant to atomic oxygen attack and

provide protection of underlying materials. However, in actual spacecraft applications, the

configuration, choice of materials, surface characteristics and functional requirements of quasi-

durable materials or protective coatings can have great impact on the resulting performance and

durability. Atomic oxygen degradation phenomena occurring on past and existing spacecraft will

be presented. Issues and considerations involved in providing atomic oxygen protection for

materials used on spacecraft in low Earth orbit will be addressed. Analysis of in-space results to

determine the causes of successes and failures of atomic oxygen protective coatings is presented.

1. INTRODUCTION

Atomic oxygen, which is the most prevalent of the atmospheric species in LEO, can readily

oxidize spacecraft polymers as a result of its high reactivity and high flux (1-3). Such oxidation

can result in erosion leading to serious spacecraft performance and/or structural failure problems.

Efforts have been expended by numerous aerospace and materials organizations to develop

protective coatings for polymers as well as polymeric materials that are inherently durable to

atomic oxygen attack. The development of both protective coatings for polymers as well as

inherently durable polymers has been predominantly through the use of metal atoms that develop

stable nonvolatile oxides thus preventing or reducing atomic oxygen attack of the hydrocarbon
polymers.
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Quasidurablematerialshavebeenexploredordevelopedwhich incorporatesiliconealongwith
polyimideswith the intentof atomicoxygencausedformationof sufficientsilicondioxide
surfacepopulationsto protecttheunderlyingpolymers. DuPonthasexploreda
polydimethylsilioxane-polyimidemixturein amaterialcalledAOR Kapton(Atomic Oxygen
ResistantKapton)(4). However,thespatialvaryingandlow concentrationof thesilicone
constituentsallows_adual atomicoxygenattackof thebulk materialwhenevaluatedin _ound
laboratorytesting(4).Polydimethylsilioxanes,which containonesiliconatomperoxygenatom,
aregraduallyconvertedto silica by theatomicoxygenattack. In this processthelossof the
methyl_oups andconversionto SiO2resultsin shrinkageof thepolymerwith attendantcracks
-thatcanleadto attackof anyunderlyingpolymers(5-6). However,theuseof texturedsurfaces
on thepolydimethylsilioxaneshasproducedcoatingsthatdonot crackfrom thesameatomic
oxygenfluencesthatwould causethesmoothsurfaceson thesamematerialsto crack(7).
Silsesquesilioxaneshaveshownpromiseoverconventionalpolydimethylsilioxanesin thatthey
contain1.5siliconeatomsperoxygenatomanddo notshowthe shrinkagecrackingphenomena
of polydimethylsilioxanes.Silsesquesilioxane-polyimidecopolymersarecurrentlybeing
investigatedby theUniversityof Michiganthathavepotentialto satisfynecessarymechanical
properties,processingcharacteristicsaswell asatomicoxygendurability properties(8). The
incorporationof othermetalatomsin polyimidecompoundshasalsobeeninvestigated.Triton
Systems,Inc.hasdevelopedphosphorouscontainingpolyimidesin bothamberandclearcolors
which developphosphorousoxideson thesurfaceof thepolymerthat tendto shieldthe
underlyingpolymersfrom atomicoxygenattack(9). Suchpolymersarecurrentlybeing
evaluatedin spaceaspart of theMaterialsInternationalSpaceStationExperiment.University of
Rochesterhasdevelopedzirconiumcomplexcompoundsthatcanbemixedwith polyimidesthat
tendto developprotectivezirconiumoxidesurfaces(10). Someof thechallengesof the above
materialshavebeento incorporatea sufficientatomicpopulationof theprotectingmetal atomsin
thepolymerstructuresto becomeatomicoxygenprotectingwithout compromisingtheir
mechanical,optical,andUltravioletradiationdurabilityproperties.Testingof manyof these
materialshasyet to becompletedto validatetheir long-termdurability in theLEO environment.

Theuseof atomicoxygenprotectivecoatingsoverconventionalpolymersthathavebeenusedin
spaceseemsto beaneasiersolutionto obtainingatomicoxygendurability in spacebasedon the
extentof useof thisapproachto date. Metal atomsor metaloxidemoleculeshavebeenused
extensivelyfor surfaceprotection. Typically siliconedioxide, fluoropolymerfilled silicon
dioxide,aluminumoxideor germaniumhavebeensputterdepositedonpolymersto provide
atomicoxygenprotection. For example,the largesolararrayblanketson InternationalSpace
Stationhavebeencoatedwith 1300Angstromsof SiO2for atomicoxygenprotection(11).

Surfacesof hydrocarbonpolymershavebeenmodifiedby IntegrityTestingLaboratoryusing
chemicalconversionto incorporatesiliconatomsfor protectionin asilylation processor by
implantingmetalatomsof A1,Si orB in thesurfaceof polymersfor thepurposeof developing
protectiveoxides(12). Thesematerialsarealsocurrentlybeingtestedin spaceaspartof the
MaterialsInternationalSpaceStationExperiment.

Althoughprotectivecoatingscanprovideexcellentatomicoxygenprotectionof hydrocarbon or

halocarbon polymers, the details of how the coatings are used and/or applied can result in widely
varying protection consequences.
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2. IN-SPACE PROTECTIVE COATING EXPERIENCES

2.1 European Retrievable Carrier (EURECA)

The EURECA spacecraft, which was deployed into low Earth orbit on August 2, 1992 and

retrieved after 11 months on June 24, 1993, was exposed to an atomic oxygen fluence of

approximately 2.3x102° atoms/cm 2 (13). To assist in its retrieval , the spacecraft used two thin

adhesively mounted acrylic optical retroreflectors for laser range finding. Prevention of atomic

oxygen attack of the retroreflector surfaces, which would have degraded the specularity of the

reflectance, was accomplished by coating the retroreflector surface with a _ 1000 Angstrom thick

film of sputter deposited SiO2 filled with 8% fluoropolymer (by volume). The LEO exposed and

retrieved retroreflector was inspected and optically characterized. The results indicated that the

protective coating provided excellent protection and the retroreflector performed as planned

except in a small 3 cm patch where the.protective coating was accidentally abraded prior to flight

as a result of handling during preflight ground integration (13). Figure 1 shows a close up
picture of the retroreflectors as well as their appearance during illumination after retrieval.
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Figure 1. - EURECA retroreflectors after retrieval close up and during illumination.

2.2 International Space Station (ISS) Retroreflectors

ISS retroreflectors, which serve in a similar role as the EURCA retroreflectors, have been used

which employ a comer cube retroreflector that is housed in a 10 cm diameter Delrin ® 100

polyoxymethylene mount. Polyoxymethylene is an oxygen rich polymer that results in it being

readily attacked by atomic oxygen. To prevent atomic oxygen attack of the Delrin ®, the

machined polymer surfaces were coated by the same processes, in the same facility and with the

same _1000 Angstrom thin film of sputter deposited of 8% fluoropolymer filled SiO2 that was

used for the EURECA retroreflector. Several of these retroreflectors have been mounted on the

external surfaces of the ISS structures at various locations that are exposed to LEO atomic

oxygen. Figure 2 shows a close up of one of the coated retroreflectors prior to use on ISS in

space as well as a photograph from space of a retroreflector after attack by atomic oxygen. It is

clear from the in-space photograph that the coating was only partially attached allowing direct
atomic oxygen attack of the unprotected areas.
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Figure 2.- ISS retroreflectors prior to launch and during use in space on ISS after atomic

oxygen attack.

2.3 ISS Photovoltaic Array Blanket Box Lid Blanket

Prior to deployment, the ISS photovoltaic arrays were folded into a box that allows the array to

be compressed in a controlled manner against a cushion of open pore polyimide that was covered

with a 0.0254 mm thick aluminized Kapton ® blanket. The Kapton ® was coated on both surfaces

with 1000 Angstroms of vacuum deposited aluminum. The array was exposed to the LEO atomic

oxygen environment from December 2000 through December 2001. Photographs of the array,

taken in orbit, indicated that the Kapton ® blanket had been almost completely oxidized leaving

only the thin largely tom aluminization in place as shown in Figure 3.

a. Distant photo b. Close up photo

Figure 3. - ISS photovoltaic array showing effects of atomic oxygen erosion of the double

aluminized Kapton ® blanket cover for the ISS photovoltaic arrays box cushions.
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3. ANALYSES AND DISCUSSION

3.1 Surface Roughness and Defect Density

The drastic differences in atomic oxygen protection provided by the same S iO2 coating filled

with 8% fluoropolymer on the EURECA retroreflectors and the ISS retroreflectors is thought to

be due to drastic differences in the protective coating defect densities. The acrylic EURECA

retroreflectors surfaces were extremely smooth as required to produce high fidelity specular

reflections. Such smooth surfaces result in low-defect-density protective coatings that have also

been demonstrated, in ground laboratory testing, to perform acceptably. For example smooth

surface (air cured side) Kapton ® when coated with 1300 Angstrom thick SiO2 resulted in _ 400

pin window defects/cm 2 however the same coating on the rougher surface (drum cured side) has

been found to result in 3500 pin window defects/cm 2 (11). Similar experiences with graphite

epoxy composite surfaces formed by casting against another smooth surface produce defect

densities of N262,300 defects/cm 2 (14). Surface leveling polymers applied 'over such surfaces

have been found to reduce the defect densities by an order of magnitude to N22,000 defects/cm 2
(14).

The machining of the Delrin ® 100 polyoxymethylene retroreflector mount surfaces produces

machine marks or fills in the surface resulting in a highly defected atomic oxygen protective

coating. Such rills allow atomic oxygen to oxidize and undercut the high erosion yield Delrin ®,

causing the coating to gradually be left as an unattached gossamer film over the retroreflector

mount which could be easily torn and removed by intrinsic stresses and thruster plume loads.

The use of surface leveling coatings over the machined Delrin ® or use of alternative atomic

oxygen durable materials could potentially eliminate the observed problem.

3.2 Trapping of Atomic Oxygen between Defected Protective Surfaces

The lack of atomic oxygen protection provided by the aluminized Kapton ® blanket cover for the

ISS photovoltaic arrays box cushion is thought to be due to due to the trapping of atomic oxygen

between the two aluminized surfaces on the 0.0254 mm thick Kapton ® blanket. Defects in the

space exposed aluminized surface allow atomic oxygen to erode undercut cavities. If the

undercut cavity extends downward to the bottom aluminized surface then the atomic oxygen

becomes somewhat trapped and has multiple opportunities for reaction until it either recombines,

reacts or escapes out one of the defects in the aluminization. This eventually results in a

complete loss of the Kapton ® with only the aluminized thin film remaining. The vacuum

deposited aluminum has a slight tensile stress that causes stress wrinkling of the unsupported

aluminum films. Figure 4 is a photograph of a vacuum deposited aluminized Kapton ® sample

that was placed in a radio frequency plasma environment to completely oxidize the Kapton ® over
a portion of the sample.
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Figure 4. - Photograph of a vacuum deposited aluminized Kapton ® sample after ground

laboratory oxidation of lower portion of the sample.

As can be seen in Figure 4, where the _1000 Angstrom aluminum film in the lower portion of

the sample is free standing, stress wrinkles and tears develop similar to those seen in the ISS
photograph of Figure 3.

A two dimensional Monte Carlo computational model has been developed which is capable of

simulating LEO atomic oxygen attack and undercutting at crack defects in protective coatings

over hydrocarbon polymers (15). Optimal values of the atomic oxygen interaction parameters

have been identified (see Table 1) by forcing the Monte Carlo computational predictions to

match results of protected samples retrieved from the Long Duration Exposure Facility (15).

The Monte Carlo model interaction parameters and values indicated in Table 1 were used to

predict the consequences of the same fluence (100000 Monte Carlo atoms) of atomic oxygen

entering a crack or scratch defect in the top aluminized surface. This was accomplished using

100000 Monte Carlo atoms entering a defect which was 20 Monte Carlo cells wide (representing

a 13.4 micrometer wide defect) over a 38 cell thick (representing a 0.0254 mm thick) Kapton ®

blanket. Figure 5 shows the Monte Carlo model computational erosion results for various angles

of attack of the atomic oxygen for both double surface-coated Kapton ® (which was the case for

ISS) and the predicted result if only a single top surface had been aluminized.
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Table 1. Computational Model Parameters and Reference Values for LEO Atomic Oxygen

Interaction with Kapton ®

Atomic oxygen initial impact reaction probability

Activation energy, EA, in eV for energy dependent reaction probability

Atomic oxygen probability angle of impact dependence exponent, n, in

(cos0) n angular dependence where 0 is the angle between the arrival
direction and the local surface normal

Probability of atomic oxygen recombination upon impact with protective

Probability of atomic oxygen recombination upon impact with polymer

Fractional energy loss upon impact with polymer

Degree of specularity as opposed to diffuse scattering of atomic oxygen

uponnon-reactive impact with protective coating where 1 = fully specular
and 0 - fully diffuse scattering

Degree of specularity as opposed to diffuse scattering of atomic oxygen

upon non-reactive impact with polymer where 1 = fully specular and
0- fully diffuse scattering

for thermally accommodated atomic oxygen atoms, (K)

Limit of howmany bounces the atomic oxygen atoms are allowed to make

before an estimate of the probability of reaction is assigned

'lhermally accommodated energy/actual atom energy for atoms assumed

to be thermally accommodated

Atomic oxygen average arrival direction with respect to initial surface

normal, degrees

Initial atomic oxygen energy, eV

'lhermospheric atomic oxygen energy, °K

Atomic oxygen arrival plane relative to Earth for a Maxwell-Boltzmann

atomic oxygen temperature distribution and an orbital inclination of 28.5 °

0.11

0.26

0.13

0.24

0.28

0.035

300

25

Depends upon

example
4.5

1000

Horizontal
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a. Aluminized on both sides

Figure 5.- Monte Carlo computational atomic oxygen erosion predictions for various angles of

attack of atomic oxygen at a crack or scratch defect in the aluminized Kapton ® surface.
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b. Aluminized on exposed side only

Figure 5.- Monte Carlo computational atomic oxygen erosion predictions for various angles of

attack of atomic oxygen at a crack or scratch defect in the aluminized Kapton ® surface.

As can be seen from Figure 5 and Table 1, even though the atomic oxygen gradually becomes

less energetic with number of interactions and has a 13 % chance of recombination, the trapped
atoms undercut far more in the actual ISS case of a double aluminization as would have occurred

if it was simply aluminized on one side. Thus, more atomic oxygen protective coatings appear to

cause more attack than if simply a single coating was used.
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The extent of undercutting of trapped atomic oxygen is also dependent on the opportunity for the

atoms to loose energy, recombine or escape back out the defect opening. Figure 6 compares the

results of Monte Carlo computational predictions for sweeping incidence (variable angle of
attack) atomic oxygen using 100000 Monte Carlo atoms entering a 13.4 micrometer wide crack

or scratch defect for both single side and double side aluminized Kapton ®.

0.25 -

Double-coated

5.00E+04

Single-coated
i i

1.00E+05 1.50E+05

Atoms entered

2.00E+05 2.50E+05

Figure 6.- Monte Carlo computational atomic oxygen erosion predictions for sweeping
incidence atomic oxygen attack at crack or scratch defect sites in the aluminized

Kapton ® as a function of atomic oxygen fluence.

As can be seen in Figure 6, the double surface aluminized Kapton ® consistently reacts more

atomic oxygen atoms than the single surface aluminized Kapton ® except at very low fluences

where the erosion in both cases do not reach the bottom of the polymer. For both cases, as the

fluence increases, the atomic oxygen can escape out the bottom (only in the case of the single
surface aluminized Kapton®), recombine or thermally accommodateand thus becomes less

probable to react with the Kapton ®. Thus it appears that a single surface aluminized Kapton ®

would have been much more durable because the unreacted atoms passing through the bottom of

the polymer simply enter into the open pore foam and would _adually react with it without

causing much damage to the aluminized Kapton ®.

One might also wonder why the double SiO2 coated ISS solar array blankets have not shown

similar detachment of the outer surface SiO2 layer. However, considerable efforts were

expended to reduce the defect density in these surfaces which have probably resulted in there
being far fewer defects/cm 2 in the solar array blanket coatings than for the aluminized blankets

on the solar array blanket boxes. Ground laboratory testing to full 15-year ISS fluence levels also
indicated acceptably low undercutting.
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4. CONCLUSIONS

Atomic oxygen protective coatings have been developed and used in space that perform

acceptably. However, rough surface substrates cause defects in the protective coatings that allow

atomic oxygen to react and gradually undercut the protective coating. In the case of machined

Delrin ® ISS retroreflector mounts, such roughness has lead to detachment of portions of the
protective film covering the retroreflector mount.

Atomic oxygen undercutting of the double aluminized Kapton ® blanket covers for the ISS

photovoltaic array box cushions has occurred resulting in a torn and partially detached aluminum

film. Based on Monte Carlo modeling, it appears that this is a result of atomic oxygen atoms that

become trapped between the two aluminized films on each side of the Kapton ® blanket. Thus it

appears that use of a single top surface aluminum coating would result in improved atomic
oxygen durability.

For both the ISS retroreflector mounts and the aluminized Kapton ® blanket covers for the ISS

photovoltaic arrays box cushions, gound laboratory testing should validate durability
improvements.
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will be presented. Issues and considerations involved in providing atomic oxygen protection for materials used on

spacecraft in low Earth orbit will be addressed. Analysis of in-space results to determine the causes of successes and
failures of atomic oxygen protective coatings is presented.
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